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1. INTRODUCTION

In 1980 Brézis and Wainger [2] showed that every function f in the
Sobolev space H1+n/p

p (Rn), 1 < p <., satisfies the following Lipschitz type
condition

|f(x)−f(y)| [ c ||x−y||2 |log ||x−y||2 |1/pŒ ||f | H1+n/p
p (Rn)||

for all x, y ¥ Rn with 0 < ||x−y||2 < 1/2. Here || · ||2 denotes the Euclidean
norm in Rn, the conjugate index pŒ of p is given by 1/p+1/pŒ=1, and the
constant c is independent of x, y and f.



Motivated by this fact, Edmunds and Haroske [5, 6] introduced gener-
alized Lipschitz spaces Lip(1, −a)(Rn), a \ 0, formed by all complex-valued
functions f on Rn such that the norm

||f | Lip(1, −a)(Rn)||=||f | L.(Rn)||+ sup
0 < ||x−y||2 < 1/2

|f(x)−f(y)|
||x−y||2 |log ||x−y||2 |a

is finite. The Brézis–Wainger result says that there is a continuous embed-
ding

H1+n/p
p (Rn) + Lip(1, −1/pŒ) (Rn). (1)

This corresponds to the ‘‘limiting’’ case, where the ‘‘differential dimension’’
of both spaces is the same, s−n/p=1, of the well-known embeddings

H s
p(R

n) + Lip(Rn) if s > 1+n/p.

It was shown in [5] that formula (1) is sharp, in the sense that H1+n/p
p (Rn)

does not embed in Lip (1, −a)(Rn) whenever a < 1/pŒ. Moreover, Edmunds
and Haroske studied in [5] and [6] embeddings of Triebel–Lizorkin spaces
F s

p, q(R
n) and Besov spaces B s

p, q(R
n) in Lipschitz type spaces.

When all spaces are defined on a bounded C.-smooth domain W ı Rn

then, for appropriate values of the parameters, these embeddings are even
compact. In the context of Besov spaces it was shown in [5, Theorem 2.1]
that for 0 < p, q [. the embedding

idB: B1+n/p
p, q (W) Q Lip(1, −a)(W)

is compact if and only if a > max(1−1/q, 0), and two-sided estimates for
the entropy numbers of idB were given in [5, Theorem 3.5] and [6,
Theorem 3.11]. The upper entropy estimates were derived from a fac-
torization of idB through another embedding id of certain weighted
sequence spaces. Such factorizations, in turn, were obtained via (sub)ato-
mic decompositions of function spaces as developed by Triebel [25], see
also [5].

The aim of the present paper is to improve the known entropy estimates
for the above-mentioned embeddings id and idB. In the sequence space
context we obtain almost sharp two-sided estimates, where the gap between
upper and lower bounds is at most of logarithmic order. Our methods of
proof, both for the upper and for the lower estimates, are quite different
from those used in [5, 6]. Our approach to the upper estimates is based
on the famous Sudakov minoration principle from probability theory,
combined with complex interpolation techniques. These tools are however
only available in the framework of Banach spaces, so we cannot treat the
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quasi-Banach case. In our lower estimates we use direct combinatorial
arguments, and the results cover the quasi-Banach case, too.

As an application we derive then new upper entropy estimates for the
function space embeddings idB.

The organization of the paper is as follows. In Section 2 we fix the nota-
tion, recall some relevant facts, and establish a few auxiliary results for
later use. Section 3 is devoted to entropy estimates for embeddings (and
diagonal operators) in sequence spaces, while in Section 4 applications to
Besov–Lipschitz embeddings are given.

2. NOTATION AND PRELIMINARIES

a. Sequence spaces. Throughout the paper we assume that all Banach
spaces under consideration are defined over the field C of complex
numbers, unless explicitly stated otherwise. We use the common notation ln

p

for the space Cn equipped with the norm

||x||p=˛1 C
n

k=1
|xk |p21/p

for 1 [ p <.

sup
1 [ k [ n

|xk | for p=..

The weighted vector-valued spaces lq(wj Aj), 1 [ q [., where Aj are
Banach spaces and the weights wj > 0 are positive real numbers, consist of
all sequences x=(xj)

.

j=1 with xj ¥ Aj and

||x | lq(wj Aj)||=1 C
.

j=1
wq

j ||xj | Aj ||q21/q

<.,

with the usual modification of the norm for q=.. Under this norm,
lq(wj Aj) is clearly a Banach space. By the jth coordinate of x=(xj)

.

j=1 ¥

lq(wj Aj) we mean the vector xj ¥ Aj. We shall work in this paper with the
spaces

lq(ja lMj
p ), where 1 [ p <., 1 [ q [., M j ’ 2 jn and a ¥ R.

It sufffices however to consider the model case Mj=2 j, the results and
proofs are the same. The symbol ’ has the following meaning. Given two
sequences (ak)

.

k=1 and (bk)
.

k=1 of positive real numbers we shall write
ak Q bk, if there is a constant c > 0 such that for all k ¥N the inequality
ak [ c bk holds, and ak ’ bk, if both ak Q bk and bk Q ak are fulfilled. All
constants c, C, ... appearing in the sequel are to be understood as positive
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real numbers which may depend on the involved real parameters
p, q, a, b, ... ¥ R but not on integers j, k, m, n, ... ¥N. Logarithms are
always taken to the base 2, log=log2.

b. Entropy numbers. The kth (dyadic) entropy number of a bounded
linear operator T: X Q Y from a Banach space X into another Banach
space Y is defined as

ek(T)=inf{e > 0 : T(BX) can be covered by 2k−1 balls of radius e in Y},

where BX denotes the closed unit ball in X. Entropy numbers are closely
related to Kolmogorov’s concept of metric entropy, which goes back to the
1930’s. Since then it has been successfully applied in many different
branches of mathematics. Due to the obvious fact that

T is compact if and only if lim
k Q.

ek(T)=0,

the rate of decay of the sequence (ek(T)) can be viewed as a measure for
the ‘‘degree’’ of compactness of T. Entropy numbers enjoy many nice
properties, for example they are additive and multiplicative, and behave
well under interpolation. For these basic properties, more background,
and applications to eigenvalue and compactness problems we refer to
the monographs by Pietsch [18], König [10], Carl and Stephani [4],
Edmunds and Triebel [7], and Triebel [25], and the references given
therein, concerning recent applications we mention also the papers by
Edmunds and Haroske [5, 6], and by Leopold [15, 16].

For later use we state now some known results; the first one is due to
Schütt [21].

Lemma 1. Let 1 [ p [ q [., then

ek(id: ln
p Q ln

q) ’ ˛
1 if 1 [ k [ log 2n

R log 12n
k

+12

k

S1/p−1/q

if log 2n [ k [ 2n

2−k−1
2n n1/q−1/p if k \ 2n.

(2)

Originally the asymptotic formula (2), which is essential in many appli-
cations, was proved in [21] for real spaces, with n on the right hand side
instead of 2n. The complex version follows from volume arguments,
regarding the n-dimensional complex space ln

p as 2n-dimensional real space.
For details see [7, Proposition 3.2.2]. In passing we remark that (2) has
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recently been extended to the quasi-Banach case 0 < p [ q [., see [7, 25,
12]. This was again motivated by applications, mainly by the increasing
interest during the last decade in quasi-Banach function spaces, for instance
in (both classical and generalized) Besov, Sobolev, and Lipschitz spaces.

The following result is due to Gordon, König and Schütt [9, Proposition
1.7]. Formula (3) remains valid for complex spaces, provided the factor
2−k/n is replaced by 2−k/2n.

Lemma 2. Let X be a real Banach space with 1-unconditional basis
{xj}

.

j=1 (for example a symmetric Banach sequence space, or any of the
spaces lp with 1 [ p <.), and let Ds: X Q X be the diagonal operator
induced by xj W sjxj, where s1 \ s2 \ · · · \ 0. Then for all k ¥N

sup
n ¥N

2−k/n(s1 · · ·sn)1/n [ ek+1(Ds) [ 6 sup
n ¥N

2−k/n(s1 · · ·sn)1/n. (3)

c. The a-norm. An important and very useful tool in the theory of
Gaussian measures on Banach spaces (and also in Banach space geometry,
see e.g. [19]) is the so-called a-norm of an operator T: H Q X from a
Hilbert space H into a Banach space X. It is defined by

a(T)=sup 1F
E

||Th||2 dcE(h)2
1/2

,

where the supremum is taken over all finite-dimensional subspaces E of H.
The measure cE denotes the standard normal distribution on the complex
Hilbert space E, regarded as Cdim E=R2 dim E. Although Gaussian measures
are usually considered on real spaces only, there is no real need for this
restriction, and so we do not leave the complex framework.

The following result, which relates the a-norm with entropy numbers, is
known as Sudakov’s minoration principle, see [22] for the original for-
mulation, [14, Theorem 3.18] for a variant in the language of Gaussian
processes, or [11] for the version given below.

Lemma 3. There is a constant c > 0 such that for all operators T from a
Hilbert space H into a Banach space X the inequality

sup
k ¥N

k1/2ek(Tg) [ c a(T)

holds. (Here Tg denotes the dual of T.)

Next we state a consequence of Sudakov’s inequality, which will be
needed later.
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Lemma 4. There is a constant c > 0 such that the diagonal operator

D: l1 Q l., given by D(xn)=((1+log n)−1 xn),

satisfies for all k ¥N the upper entropy estimate

ek(D) [ c k−1.

Proof. It is well-known (see e.g. [17, Theorem 9]) that for any diagonal
operator Ds: l2 Q l., generated by s1 \ s2 \ · · · \ 0, one has

a(Ds) ’ sup
n ¥N

sn `1+log n.

Taking sn=(1+log n)−1/2, this yields a(Ds: l2 Q l.) <., consequently
Lemma 3 implies

ek(Ds: l1 Q l2) Q k−1/2,

and by Tomczak-Jaegermann’s results [23] on duality of entropy numbers
we obtain

ek(Ds: l2 Q l.) Q k−1/2.

Finally the multiplicativity of the entropy numbers gives the desired
estimate for our diagonal operator D

e2k(D: l1 Q l.) [ ek(Ds: l1 Q l2) · ek(Ds: l2 Q l.) Q k−1. L

d. Complex interpolation. As already mentioned in the introduction,
interpolation techniques are an essential part of our methods of proof. Our
general reference to interpolation theory, in particular to the complex
method, are the monographs by Bergh and Löfström [1], and Triebel
[24]. We will use the same notation and terminology. In particular, if
0 < h < 1 and (A0, A1) is an interpolation couple (i.e. a pair of Banach
spaces which both embed linearly and continuously into a common
Hausdorff vector space), then we denote by [A0, A1]h the complex inter-
polation space. Later on we will need the following result, which is a
special case of more general and well-known facts.

Lemma 5. Let 1 [ q <., b ¥ R and 0 < h < 1. Then one has with
equality of norms

[ lq (l2j

.), lq(jbl2j

1 )]h=lq(jal2j

p ) and (4)

[c0(l
2j

.), c0(jb l2j

1 )]h=c0(ja l2j

p ), (5)

where 1/p=h and a=h b.
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Proof. This is a consequence of the interpolation result (i) for vector-
valued lq-spaces, the simple observation (ii), and the well-known basic
formula (iii), which are stated below. All three results hold with equality of
norms of the involved spaces.

(i) Let (Aj, Bj), j ¥N, be any sequence of Banach couples, let
1 [ q <. and 0 < h < 1. Then

[lq(Aj), lq(Bj)]h=lq([Aj, Bj]h).

For q=. the same is true, if lq is replaced by c0, cf. [24, Theorem 1.18.1.
and Remarks 1 and 2, p. 122].

(ii) Let A be a Banach space and l > 0, and denote by l A the same
space equipped with the new norm

||x||lA :=l ||x||A.

Then by the very definition of the complex method one has

[A0, lA1]h=lh[A0, A1]h.

(iii) If 1 [ p0, p1 [. and 0 < h < 1, then

[lp0
, lp1

]h=lp, with
1
p
=

1−h
p0

+
h

p1
. L

Finally let us recall the nice behaviour of entropy numbers under inter-
polation, specified to the complex method, which is sufficient for our
present purposes. The general result, for arbitrary interpolation functors of
type h, can be found in [18, Theorem 12.1.11]. Here L(X, Y) stands for
the class of all bounded linear operators from X into Y. (A similar result is
true when the target space is interpolated, see [18, Theorem 12.1.12].)

Lemma 6. Let (A0, A1) be an interpolation couple, let B be Banach
space, 0 < h < 1 and m, n ¥N. Then for every operator T ¥L(Ai, B), i=
0, 1, one has

em+n−1(T: [A0, A1]h Q B) [ 2em(T: A0 Q B)1−h en(T: A1 Q B)h.

3. ENTROPY ESTIMATES IN SEQUENCE SPACES

First we treat operators in weighted sequence spaces. We begin with a
simple, but nevertheless very useful observation. It is obvious that the
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weighted vector-valued sequence space lq (wj Aj), 1 [ q [., (as introduced
in Section 2.a) is isometrically isomorphic to to the unweighted space
lq (Aj), and clearly the isomorphism is given by the diagonal operator

D: lq(wj Aj) Q lq(Aj), Dx=(wjxj).

Moreover, the inverse D−1: lq(Aj) Q lq(wjAj) of D is the diagonal operator
generated by the sequence (w−1

j ). Therefore, due to the multiplicativity of
the entropy numbers, we have

ek(id: lq(l
2j

p ) Q lq(j−al2j

.))=ek(id: lq(jal2j

p ) Q lq(l
2j

.))

=ek(Da: lq(l
2j

p ) Q lq(l
2j

.)), (6)

where the diagonal operator Da, a > 0, is given by

Da(xj)=(j−axj). (7)

Roughly speaking this means that weights can be ‘‘shifted’’ from the target
space to the first space, or to the operator. This possibility will be
extremely useful for the interpolation techniques that we are going to apply
in the proof of our main result.

Our first theorem provides upper estimates for the diagonal operators of
the form (7).

Theorem 1. Let 1 [ p <., 1 [ q [. and a > 0. Then the entropy
numbers of the diagonal operator

Da: lq(l
2j

p ) Q lq(l
2j

.)

satisfy the upper estimate

ek(Da) Q ˛
k−1/p(1+log k)2/p−a if a > 2/p

k−1/p(1+log k)1/p if a=2/p

k−a/2 if a < 2/p.

(8)

Proof. In order to make the proof more transparent, it will be divided
into several steps. Our strategy is as follows. First we deal with the special
case p=1. This is the point where in a crucial way Sudakov’s minoration
comes into play, or more precisely, our auxiliary Lemma 4, which was
derived from it. (Note that for p=1 the ‘‘critical’’ value of a is a=2/p
=2.) Applying then complex interpolation (Lemmata 5 and 6) we extend
the result to the general case 1 [ p <..
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Step 1. Let p=1 and a > 2, and split a as a=b+d+1 with b > 1/qŒ
and d > 1/q.

For arbitrary n ¥N consider the projections Pn onto the first n blocks,
and Qn onto the remaining blocks, defined by

Pnx=(x1, ..., xn, 0, ...) and Qnx=(0, ..., 0, xn+1, xn+2, ...).

Then we have the following commutative diagram.

lq(l
2j

1 ) |ŁDaQn lq(l
2j

.)

DbQn
‡ …DdQn

l1(l
2j

1 ) |ŁD1 l.(l2j

.).

Using Hölder’s inequality we obtain the norm estimates

||DdQn || [ 1 C
j > n

j−dq21/q

’ n1/q−d and similarly

||DbQn ||=||(DbQn)g|| [ 1 C
j > n

j−bqŒ21/qŒ

’ n1/qŒ−b,

since we have d q > 1 and b qŒ > 1.
Note that the operator D1 is a diagonal operator from l1 into l. gener-

ated by a sequence sj ’ (1+log j)−1, therefore Lemma 4 implies ek(D1) Q
k−1. The multiplicativity of entropy numbers gives now

ek(DaQn) [ ||DbQn || ek(D1) ||DdQn || [ c k−1n1/qŒ−b+1/q−d [ c k−1n2−a

for all k, n ¥N and some constant c > 0 not depending on n and k.
Our next aim is to estimate the entropy numbers of DaPn. We recall the

well-known inequality (see e.g. Proposition 1.3.1 and formula (1.3.14)’ on
p. 16 of [4])

ek+1(T) [ 4 · 2−k/2n ||T||,

which is valid for arbitrary operators T of rank n between complex Banach
spaces and for all integers n, k ¥N.

Since we have

||DaPn || [ ||Da || [ 1 and rank(DaPn)=C
n

j=1
2 j < 2n+1,

it follows for k=8n ·2n

ek+1(DaPn) [ 4 · 2−8n ·2n/2 · 2n+1
=4·2−2n.
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The additivity of entropy numbers yields finally

e2k(Da) [ ek+1(DaPn)+ek(DaQn)

[ 4 · 2−2n+c k−1n2−a ’ k−1(1+log k)2−a,

since clearly n ’ 1+log k. The proof in our special case is finished.

Step 2. In the case p=1, a=2 we write again a=b+d+1, where now
b=1/qŒ and d=1/q, and consider a similar commutative diagram as in
Step 1, but this time for DaPn instead of DaQn.

lq(l
2j

1 )|ŁDaPn lq(l
2j

.)

DbPn
‡ …DdPn

l1(l
2j

1 )|ŁD1 l.(l2j

.).

Since b qŒ=d q=1 we have the norm estimates

||DdPn || [ 1 C
n

j=1
j−dq21/q

’ (1+log n)1/q and

||DbPn ||=||(DbPn)g|| [ 1 C
n

j=1
j−bqŒ21/qŒ

’ (1+log n)1/qŒ.

Moreover, we have trivially

||DaQn ||=(n+1)−a < n−2.

Using again additivity and multiplicativity of entropy numbers we obtain

ek(Da) [ ||DaQn ||+||DbPn || ek(D1) ||DdPn ||

[ n−2+c(1+log n)1/qŒ · k−1 · (1+log n)1/q

’ n−2+k−1(1+log n).

Now let k ’ n2, then clearly log k ’ log n, and the desired result follows,

ek(Da) Q k−1(1+log k).

Step 3. If p=1, 0 < a < 2, we proceed in complete analogy with
Step 2. Therefore we only indicate the changes.

Split a=b+d+1, with b < 1/qŒ and d < 1/q, where also negative values
of b and d are allowed. Considering the same diagram as in Step 2, we get
the norm estimates

||DaQn || < n−a, ||DdPn || Q n1/q−d and ||DbPn || Q n1/qŒ−b,
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which gives for all k, n ¥N

ek(Da) [ n−a+c k−1 n2−a,

and, taking again k ’ n2, we conclude that

ek(Da) Q n−a ’ k−a/2.

Step 4. It remains to prove estimate (8) in full generality, that means
for arbitrary 1 [ q [., 1 < p <. and a > 0. This will be done by complex
interpolation, where the results of the previous steps serve as one ‘‘end-
point,’’ while the other ‘‘endpoint’’ will be trivial. Define now h :=1/p and
b :=a p. Then we have clearly 0 < h < 1 and a=h b, and by Lemma 5,
formula (4), we obtain for q <.

[lq(l
2j

.), lq(jbl2j

1 )]h=lq(jal2j

p ).

Now we consider the embeddings (formal identities)

id0: lq(l
2j

.) Q lq(l
2j

.)

id1: lq(jb l2j

1 ) Q lq(l
2j

.)

The interpolation behaviour of entropy numbers (cf. Lemma 6) yields now
for the identity

id: lq(ja l2j

p ) Q lq(l
2j

.)

and arbitrary integers k ¥N the estimate

ek(id) [ 2 ||id0 ||1−h ||id1 ||h=2 ek(id1)1/p.

Using now the shifting of weights technique (see (6)), we arrive at the
inequality

ek(Da: lq(l
2j

p ) Q lq(l
2j

.)) [ ek(Db: lq(l
2j

1 ) Q lq(l
2j

.))1/p.

Inserting here the results of Steps 1–3 we get the desired estimate (8). In the
case q=. we use the second interpolation formula (5) of Lemma 5 with c0

instead of lq, and get the desired estimates for the operator

Da6 : c0(l
2j

p ) Q l.(l2j

.) instead of

Da: l.(l2j

p ) Q l.(l2j

.).
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Due to the additivity of entropy numbers this implies, for arbitrary integers
n, k ¥N,

ek(Da) [ ek(Da Pn)+||Da Qn || [ ek(Da6 Pn)+n−a,

and letting n Q. this yields

ek(Da)=ek(Da6 ).

The proof is finished. L

Now we pass to the lower estimates for the diagonal operators under
consideration.

Theorem 2. Let 1 [ p <., 1 [ q [. and a > 0. Then we have the
lower entropy estimate

ek(Da: lq(l
2j

p ) Q lq(l
2j

.)) R ˛
k−1/p(1+log k)1/p−a if a > 2/p

k−a/2 if a [ 2/p.
(9)

Proof. In the case a > 2/p we use Schütt’s result [21], stated as Lemma
1. Let n ¥N be given, and let k ’ 2n/2, then in particular n ’ log k. Res-
tricting the operator Da to the n th block and using the multiplicativity of
entropy numbers we obtain

ek(Da) \ n−a ek(id: l2n

p Q l2n

. ) ’ n−a R log 12
n+1

k
+12

k

S
1/p

’ k−1/p(1+log k)1/p−a,

and, since n ¥N was arbitrary, the desired inequality is shown.
Now let us turn to the case a [ 2/p. Here we use a direct estimate for the

entropy numbers, based on combinatorial arguments. For any given integer
n ¥N consider the set

S :=S1 × · · · ×S2n+1 ×{0}×{0}× · · · ı lq(l
2j

p ),

where Sj={e1, ..., e2j} is the set of unit vectors in C2j
. Then clearly

card S= D
2n+1

j=1
2 j=2(2n+1)(n+1).

Let h denote the Hamming distance on S, defined by

h(x, y) :=card{j ¥ {1, ..., 2n+1} : xj ] yj}.
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For every fixed element x ¥ S and every integer m with 1 [ m [ 2n+1 we
have the estimate

card{y ¥ S : h(x, y) [ m} [ 2 (2n+1) m.

(Indeed, all elements y ¥ S with h(x, y) [ m can be found as follows.
First choose an arbitrary subset J ı {1, ..., 2n+1} of cardinality card J=
m. There are of course (2n+1

m ) [ 22n+1 possible choices. For the coordinates
j ¨ J define yj :=xj, and for j ¥ J take yj ¥ Sj arbitrarily. There are
2 j [ 22n+1 such ways in each of the m coordinates, altogether 2 (2n+1) m.)

Let now A be any subset of S of cardinality card A [ 2n2
and take

m :=[n/2]. Then we have

card{y ¥ S : ,x ¥ A with h(x, y) [ m}

[ C
x ¥ A

card{y ¥ S : h(x, y) [ m}

[ card A·2 (2n+1) m [ 2n2+(2n+1) n/2 < card S,

therefore there exists an element y ¥ S with h(x, y) \ [n/2]+1 \ n/2 for
all x ¥ A. So we can find inductively a subset A ı S of cardinality
card A \ 2n2

such that h(x, y) \ n/2 for any pair of distinct elements
x, y ¥ A. This implies

||Dax−Da y||lq (l2j
. )=1 C

2n+1

j=1
j−a q ||xj −yj ||

q
.
21/q

\ (2n+1)−a 1 C
2n+1

j=1
||xj −yj ||

q
.
21/q

\ (2n+1)−a 1n
2
21/q

,

where we used that ||xj −yj ||.=1, if xj ] yj and that there are h(x, y)
coordinates j with xj ] yj. Taking into account that the set (2n+1)−1/q A
is contained in the unit ball of lq (l2j

p ) it follows

en2(Da) \
1
2
· (2n+1)−1/q−a ·1n

2
21/q

’ n−a,

whence, since n ¥N was arbitrary, we arrive at the desired inequality

ek(Da) R k−a/2. L

The proof shows that the lower estimate (9) holds even in the quasi-
Banach case 0 < p <., 0 < q [.. It seems very likely that also the upper
estimate (8) is valid in the quasi-Banach case. To prove this would require
however new techniques.
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In the Banach case 1 [ p <., 1 [ q [., the upper and lower bounds,
given in (8) and (9), coincide for 0 < a < 2/p, while for a \ 2/p there
remains only a small gap of logarithmic order (log k)1/p between the two
bounds. In general we do not know the exact asymptotic behaviour, but we
conjecture that the upper bound is sharp. This conjecture is supported by
the following result in the case q=..

Note added in proof. The conjecture was recently confirmed by
E. Belinsky (Entropy numbers of vector-valued diagonal operators,
preprint, University of the West Indies, 2001). He showed that estimate (8)
gives the exact behaviour, even in the quasi-Banach setting.

Proposition 1. If 1 [ p <. and a > 2/p, then

ek(Da : l.(l2j

p ) Q l.(l2j

.)) ’ k−1/p(log k)2/p−a.

Proof. The upper estimate is covered by Theorem 1, so we only have to
prove the lower one. First we consider the special case p=1, where we
proceed as in [21], using combinatorial arguments. By [20, Aufgabe I.29]
we have for all k, m ¥N

card 3x ¥ Zm : C
m

j=1
|xj | [ k4= C

kNm

j=0
2 j 1m

j
21k

j
2 ,

where we denoted kNm=min(k, m). In the case k [ m it follows that

C
kNm

j=0
2 j 1m

j
21k

j
2 \ 2k 1m

k
2 \ 2k D

k−1

i=0

m−i
k−i

\ 12m
k
2k.

Given any n ¥N, we consider now the subset A ı l.(l2j

1 ),

A={x=(xj)
.

j=1 : xj ¥ Z2j
, ||xj ||1 [ 2n+1 for n < j [ 2n,

and xj=0 for all other j ¥N},

and estimate its cardinality by

card A= D
2n

j=n+1
card{x ¥ Z2j

: ||x||1 [ 2n+1} \ 1 D
2n

j=n+1
2 j−n22

n+1

.

This implies

log card A \ 2n+1 C
n

j=1
j \ 2nn2.
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Clearly, the set B :=2−(n+1)A is contained in the unit ball of l.(l2j

1 ), and for
any two distinct elements x, y ¥ B the inequality

||Da x−Da y ||. \ 2−(n+1)(2n)−a

holds. Now let k=2nn2, whence log k ’ n. It follows

ek(Da) \
1
2 · 2

−n(2n)−a=2−(2+a)k−1n2−a ’ k−1(log k)2−a.

Since the integer n ¥N was arbitrary, this proves the desired assertion

ek(Da) R k−1(log k)2−a.

Now we pass to the general case 1 < p <., a > 2/p. First we note that by
complex interpolation (for details we refer to [13]) between diagonal
operators of the form Da: l.(l2j

1 ) Q l.(l2j

.) and the identity in l.(l2j

1 ) one
can derive from the upper estimate (8) the result

ek(Db: l.(l2j

1 ) Q l.(l2j

p )) Q k−1/pŒ(log k)2/pŒ−b,

valid for all b > 2/pŒ. Fixing any such b, we have a+b > 2, and by mul-
tiplicativity of entropy numbers we obtain

k−1(log k)2−a−bQ e2k(Da+b: l.(l2j

1 ) Q l.(l2j

.))

[ 2ek(Db: l.(l2j

1 ) Q l.(l2j

p )) ek(Da: l.(l2j

p ) Q l.(l2j

.))

Q k−1/pŒ(log k)2/pŒ−b ek(Da: l.(l2j

p ) Q l.(l2j

.)),

where we used in the first inequality the result in the special case. It follows

ek(Da: l.(l2j

p ) Q l.(l2j

.)) R k−1/p(log k)2/p−a. L

4. APPLICATIONS

Finally we apply the results of the preceding section to embeddings of
Besov spaces in spaces of Lipschitz type.

Theorem 3. Let 1 [ p <., 1 [ q [., a > 1/qŒ, set ag=2/p+1/qŒ,
and let W ı Rn be any bounded domain with C.-smooth boundary (for
example the open Euclidean unit ball). Then the entropy numbers of the
embedding

idB: B1+n/p
p, q (W) Q Lip(1, −a)(W)
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satisfy the upper estimate

ek(idB) Q ˛
k−1/p(1+log k)ag −a if a > ag

k−1/p(1+log k)1/p if a=ag

k−a−1/qŒ
2 if a < ag.

(10)

Proof. The technique of the proof is the same as in [6], therefore we
shall only sketch the main steps. The whole proof relies essentially on a
factorization of idB through an embedding of certain sequence spaces, and
the multiplicativity of entropy numbers. This factorization is based on
subatomic decompositions of functions f ¥ B s

p, q(R
n), as developed by

Triebel. For the details of this construction we refer to [25, Chapter
III.14], here we only explain the relevant ideas in our special situation
s=1+n/p.

Consider the cube Q=[−1/2, 1/2]n and choose k ¥S(Rn), in the
Schwartz space of complex-valued, rapidly decreasing, infinitely differen-
tiable functions on Rn, with support

supp k ı [−r/2, r/2]n for some real number r > 1

and C
m ¥ Z

n
k(x−m)=1 for all x ¥ Rn.

Given an integer j ¥N0 :=N 2 {0} and a multiindex b ¥Nn
0 let kb(x)=

xb k(x). The building blocks, called ‘‘quarks’’ in [25], of the above-
mentioned decomposition are the functions kb, j, m, defined by

kb, j, m(x) :=2−j kb(2 jx−m), x ¥ Rn.

Then one can assign, in a linear way, to every function f ¥ B1+n/p
p, q (Rn) a

sequence of complex numbers l=(lb, j, m), indexed by b ¥Nn
0, j ¥N0 and

m ¥ Zn, such that f can be represented as a series of the form

f= C
b ¥N

n
0

C
j ¥N0

C
m ¥ Z

n
lb, j, m kb, j, m, (11)

convergence being in the space SŒ(Rn) of tempered distributions, such that

||f | B1+n/p
p, q (Rn)|| ’ ||l | l.(2d |b|lq(lp))||

:= sup
b ¥N

n
0

2d |b| 1 C
.

j=0

1 C
m ¥ Z

n
|lb, j, m |p2p/q21/q

,
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with the usual modification for q=.. Here d > 0 is some sufficiently large
real number, which is independent of f, and also the equivalence constants
do not depend on f.

If f has compact support, say supp f ı W for some C.-smooth domain,
then the inner sum over m extends in fact only over a finite number of
nonzero summands, since the coefficients vanish for all those ‘‘quarks’’
kb, j, m, whose supports are disjoint from W. This number, call it Mj,
depends only on the level j, but not on the multiindex b ¥Nn

0, moreover it
can be controlled by Mj [ c 2 jn, where the constant c is determined by the
size of W and the parameter r > 1, which describes the possible overlap of
the supports of the ‘‘quarks’’ of a given level j. Applying the standard
extension-restriction procedure for Besov spaces over domains in Rn we
obtain a bounded operator

S: B1+n/p
p, q (W) Q l.(2d |b| lq(l

Mj
p )),

assigning to every function f ¥ B1+n/p
p, q (W) the family l=(lb, j, m) of all non-

zero coefficients which appear in the representation (11) of f. On the other
hand, one can show similarly as in [5], see the computations on pages
27–28, that the linear operator

T: l.(lq(OjP−a+1/qŒ lMj
p ) Q Lip(1, −a)(W), defined by

Tl= C
b ¥N

n
0

C
j ¥N0

C
Mj

m=1
lb, j, m kb, j, m,

is bounded. (Here we used the same notation OjP=1+j as in [5, 6].)
Therefore we have the commutative diagram

B1+n/p
p, q (W) ||||Ł

idB Lip(1, −a)(W)

S ‡ …T

l.(2d |b|lq(l
Mj
p )) |Łid l.(lq(OjP−a+1/qŒ lMj

. )),

where the l.-spaces are defined over the index set Nn
0. The restriction idb of

the embedding id in the diagram to the coordinate b ¥Nn
0 of the vector-

valued l.-spaces is equal to

2d |b| · id: lq(l
Mj
p ) Q lq ( OjP−a+1/qŒ lMj

. ),

thus the entropy numbers of idb can be controlled by the estimates of
Theorem 1. In order to obtain entropy estimates for the embedding id one
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can argue similarly as in [25, Theorem 9.2]: Using elementary properties of
entropy numbers one can show that if

u: A Q B

is a bounded linear operator between two Banach spaces with

ek(u) Q k−a(1+log k)b for some a > 0 and b ¥ R,

then the operator

ũ: l.(2d j A) Q l.( B), ũx=(ux, ux, ...)

satisfies the same entropy estimate, for every given d > 0. Applying this
general procedure in our special situation we can carry over the entropy
estimates of the idb’s to the embedding id (in the diagram), and by the
multiplicativity of entropy numbers finally to the embedding idB. L

Finally we compare our results for the function space embeddings idB

with those of Edmunds and Haroske, who treated also the quasi-Banach
case. In the context of Banach spaces their estimates [5, Theorem 4.10]
and [6, Theorem 3.11] read as follows.

If 1 [ p <., 1 [ q [. and a > 1/qŒ, then

k−1/p(1+log k)−aQ ek(idB) Q ˛
k−1/p(1+log k)a

g−a if a > ag

k−1/p(1+log k)1+2/p if a=ag

k−a−1/qŒ
2+p if a < ag,

(12)

where the ‘‘critical index’’ is given by ag=1+2/p+1/qŒ. Since ag > ag,
our estimate (10) improves (12) in several respects.

First, we extended the range, where the upper estimate is exact up to log-
terms, from a > ag to a > ag. Moreover we obtained a better upper bound,
since in (10) the exponent of the logarithm is smaller than in (12).

Second, for a < ag we got even an improvement in the exponent of the
power term in the upper bound. (Note that our exponent a−1/q −

2 is inde-
pendent of p, while for the exponent in (12) limp Q.

a−1/q −

2+p =0.)
It seems very likely that the estimate (10) is sharp up to log-terms,

at least in the Banach space case. However, for proving (or disproving)
this conjecture, as well as for handling the quasi-Banach case, another
discretization method is needed.
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